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Quantitative modelling of
granular suspension flows

By Herbert E. Huppert

Institute of Theoretical Geophysics, Department of Applied
Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK

A broad review is presented of the flow of particulate suspensions. The fundamental
concepts are discussed and the governing equations described. Simplified horizontally
uniform box-model solutions are obtained and numerical integrations of the nonlinear
shallow-water equations are presented, along with a brief description of an approach
using the full power of the techniques of computational fluid dynamics. Extra situ-
ations, such as the influence of a mean external flow, interstitial fluid which is less
dense than the ambient, plumes, entrainment of the ambient, and polydispersivity,
are reviewed. Applications from engineering and the Earth sciences are described.

Keywords: shallow-water equations; particulate suspension flows; box-model
solutions; external mean flows; light interstitial fluid; buoyant plumes

1. Introduction

The synopsis for this Meeting asks the following questions. Can materials which
consist of individual particles be treated as continuous materials when they flow and
are transported by air or water and subsequently deposited? Can a single model
capture all behaviours? This paper aims to address these questions in a quantitative
fashion in order to analyse situations when a relatively low concentration of small,
heavy particles is advected along by, and at the same time sediments from, a large-
scale turbulent flow.

Vigorous particle-driven flows occur in a large variety of natural and industrial
situations. In the oceans, turbidity currents which consist of large volumes of sand
and silt can propagate many hundreds of kilometres across the ocean floor (Heezen &
Ewing 1952; Middleton 1993; Dade & Huppert 1994) with the largest one yet uncov-
ered representing a deposit of 500 km3 (Rothwell et al . 1998; see also the accompany-
ing news and views article (Nisbet & Piper 1998)). They can occur as a consequence
of severe storms over shallow coastal waters, catastrophic failures of the continental
slope or surges in muddy river run-off in times of heavy rains. In the atmosphere,
severe dust storms can be generated by the picking up of loose particles from the
ground. Following an explosive volcanic eruption, a turbulent plume of hot, ash-laden
particles can quickly be taken up into the stratosphere (Woods 1995), influencing the
weather, and even the climate. Alternatively, if the contribution of the ash particles
to the bulk density of the plume is sufficiently large, a ground-hugging pyroclastic
flow is generated, which can propagate at speeds of up to hundreds of metres per
second (Dade & Huppert 1995). In the industrial context, the particle-laden out-
put of pollution into the atmosphere or a neighbouring body of water is a common
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occurrence. A determination of the concentration of the pollutant as a function of
space and time is of great importance from both a scientific and a legal point of view
(Hunt 1991; Hunt et al . 1991).

This paper reviews some of the recent work on the propagation of large-scale
particle-laden flows. Section 2 concentrates on the fundamentals involved in a quan-
titative description of gravity currents, which occur whenever fluid of one density
flows predominantly horizontally into fluid of a different density. Part of the aim of
any investigation in this area is to predict the rate of propagation of the flow and
the resulting sedimentation profile. Sections 3–5 present a discussion of the various
models and associated mathematical techniques used to obtain solutions. The sub-
sequent sections discuss a variety of extra effects, such as the imposition of a mean
flow, the influence of the density of the interstitial fluid being different from that of
the ambient, an intrusion resulting from a rising plume, the effects of entrainment
of ambient fluid and polydispersivity of the particulate matter. Where possible, the
results are compared with laboratory experiments. Applications of the results to real
large-scale situations are also briefly described.

2. Fundamental concepts

The propagation of fluid of one density predominantly horizontally into fluid of a
different density is described as a gravity current. The fundamental nature of gravity
currents has been extensively documented by Simpson (1997) and many of their
intriguing properties are the subject of intense investigation at the moment. The
propagation of a gravity current at large Reynolds number, for which viscous effects
are unimportant and whereby the current propagates under a balance of inertial and
buoyancy forces, was first analysed by von Kármán (1940) in a famous essay. With the
use of the Bernoulli equation in a manner that was made rigorous by Benjamin (1968)
in a subsequent study, von Kármán showed that when a gravity current intrudes along
a rigid horizontal plane beneath a very deep, otherwise motionless, fluid, the velocity
of the front of the current uN is related to the depth of the current just behind the
head hN by

uN = Fr(g′hN )1/2, (2.1)

where the reduced gravity

g′ = (ρc − ρa)g/ρa (2.2)

is defined in terms of the gravitational acceleration g and the densities ρc and ρa
of the current and ambient, respectively, and Fr is the (constant) Froude number
associated with the flow. According to perfect fluid theory and the incorporation of
the Boussinesq approximation, Fr =

√
2, but experimental investigations by Huppert

& Simpson (1980) established a value of 1.19 when a real current is propagating as the
result of the instantaneous release of a fixed volume of fluid. The difference between
the two values accounts for the viscous drag and turbulent Reynolds stresses which
are present in any real flow and act to slow down the propagation of the current. If
the current is the result of an instantaneous release of heavy fluid into a shallow layer
of depth H, with H < hN/0.075, motions in the upper layer influence the flow and
the appropriate Froude number is given by 0.5(hN/H)−1/3. All studies have used
(2.1) as an effective boundary condition at the front of the current.
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When the gravity current is driven by excess buoyancy arising from the presence
of suspended heavy particles, the driving buoyancy force continually changes with
time and position because the heavy particles settle out of the flow as well as being
advected along with it. The approach most frequently taken to analyse the sedimen-
tation is to assume that the (high Reynolds number) flow is sufficiently turbulent
to maintain a vertically uniform particle concentration in the main body of the cur-
rent. But at the base of the flow, where the fluid velocities diminish appreciably, the
settling of particles occurs (at low Reynolds number) at the Stokes velocity V in
otherwise quiescent fluid. Quantitatively, this implies that if N (which is possibly a
function of time and position) denotes the total number of particles per unit hori-
zontal area in a layer of depth h, the change in N , δN , in time δt due only to the
sedimentation is given by

δN = −V C0δt, (2.3)

where C0 is the (number) concentration (per unit volume) just above the base of the
flow. Since the vigorous turbulent mixing implies that C0 = N/h, (2.3) indicates (on
taking the appropriate infinitesimal limits) that

Ṅ = −V N/h, (2.4)

a relationship which has been carefully verified by Martin & Nokes (1988, 1989),
though the theoretical result had been suggested earlier and independently by others
(Einstein 1968; McCave 1970; Pantin 1979). Equation (2.4) does not yet incorporate
the advection of the particles by the mean flow, which, when done, results in the
more familiar form

Dφ
Dt

= −V φ
h
, (2.5)

where φ is the volume concentration of particles.
The above, turbulent, model for the advection and sedimentation of particles has

been used extensively. An alternative, laminar, model has been recently suggested
and its consequences investigated by Ungarish & Huppert (1998). They supposed
that the particles sediment at a uniform velocity throughout the flow. The upper
interface of the current was then defined by the kinematic shock which follows the
top of the sedimenting layers of particles. In this model, particle-free interstitial fluid
of the current is detrained through the upper interface. For typical values of the input
flow parameters there were only small differences between the two sets of results.

The relationships (2.1) and (2.5) (or the simplified version (2.4)) are the basis of
many of the analytical investigations of particle-driven gravity currents.

3. Box models

The simplest analysis for the propagation speed of and deposition from a particle-
driven gravity current proceeds by constructing a simple box model of the flow which
assumes that at any particular time there is no horizontal variation of properties
within the flow. In this approach, the current is considered to evolve in a series of
rectangles of equal area (neglecting entrainment, which will be discussed in § 9). The
major advantage of this approach is that it leads to the correct dimensional form of
solution which, in addition, can be expressed analytically in closed form.
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As an illustrative example, consider the two-dimensional instantaneous release of
a fixed cross-sectional area A of particle-laden fluid with initial volume concentration
of particles φ0 (Hallworth et al . 1998). The density of the current ρc is then related
to the volume concentration φ by

ρc = ρpφ+ ρa(1− φ), (3.1)

where ρp is the density of the particles and ρi the density of the interstitial fluid,
has been assumed equal to that of the ambient ρa. (Different values of ρi and ρa are
considered in § 7.) The reduced gravity (2.2) is then linearly related to φ by

g′ = g′pφ, (3.2)

where

g′p = (ρp − ρa)g/ρa. (3.3)

With the length of the current denoted by l(t), the box model reduces to determining
the solution of

hl = A, (3.4 a)

l̇ = Fr(g′pφh)1/2, (3.4 b)

φ̇ = −V φ/h, (3.4 c)

subject to

l = 0, (3.5 a)
φ = φ0, (3.5 b)

at t = 0.
Dividing (3.4 c) by (3.4 b), using (3.4 a) to eliminate h and solving the resulting

first-order equation subject to (3.5), we obtain the result

φ/φ0 ≡ Φ = (1− ξ5/2)2 (3.6)

in terms of the non-dimensional variable ξ ≡ l/l∞, where l∞ = (25Fr2g′pφ0A
3/V 2)1/5

is the final length of the current, at which point φ = 0. The variation of ξ with time is
obtained by substituting (3.4 a) and (3.6) into (3.4 b) and using the initial condition
(3.5 a) to obtain

τ ≡ Fr(g′pφ0A)1/2l−3/2
∞ t =

∫ ξ

0

s1/2 ds
1− s5/2 ≡ F(ξ). (3.7)

With a Froude number of 1.19, these relationships are plotted, along with some data
presented previously (Bonnecaze et al . 1993; Dade & Huppert 1994), in figure 1a. In
preparing this figure, all observed lengths were divided by 1.6 because while the box
model correctly predicts the functional form of the various relationships, it overesti-
mates the value of l∞ by a factor of ca. 1.6 (as explained in more detail in Bonnecaze
et al . 1995; Hallworth et al . 1998; Hogg et al . 1999a). The proposed scaling collapses
all the data well to provide generally good agreement between the box-model results
and the experimental data. It has been argued that the differences are probably due
to slow return motions in the upper layer of the experiments (Bonnecaze et al . 1993;
Hallworth et al . 1998), which are completely neglected in the box model.
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Quantitative modelling of granular suspension flows 2475

Figure 1. Experimental data and box-model solutions for a fixed volume of a particulate sus-
pension released instantaneously from behind a lock gate. The data are from laboratory experi-
ments presented in Bonnecaze et al . (1993) and Dade & Huppert (1994) covering a large range
of initial conditions. (a) The non-dimensional volume fraction Φ (equation (3.6)) and time τ
(equation (3.7)) as functions of the non-dimensional current length ξ. (b) The non-dimensional
deposit density η∗ (where η∗ = 12l∞η/(25φ0ρPA) from equation (3.9)) plotted as a function of
ξ.

The resulting deposit distribution can be evaluated from the statement that in
time δt, a mass per unit width δM = −ρPAδφ is distributed uniformly over a length
l to lead to a deposit density

δη = −ρPAδφ/l. (3.8)
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The final total deposit density is thus given by

η = −ρpA

∫ l∞

0
s−1 dφ

ds
ds =

25ρPφ0A

12l∞
(1− 8

5ξ
3/2 + 3

5ξ
4), (3.9)

which is graphically illustrated and compared with experimental data in figure 1b.
The experimental data is again in good agreement with the theoretical results, except
near the back of the channel where the particles seem to be swept downstream more
than the theory would suggest.

There exist many other box-model solutions, all of which give a good indication of
the form of the full solution and can be easily and quickly derived. Examples include
axisymmetric currents (Dade & Huppert 1995; Huppert & Dade 1998), currents
generated by a fixed flux (Dade & Huppert 1995, 1996; Hallworth et al . 1999),
currents propagating in a mean flow (§ 2 d; Hallworth et al . 1998, 1999), currents
with an interstitial density which is less than the ambient even though the bulk
density is, at least initially, larger than the ambient (Sparks et al . 1993; Hogg et
al . 1999b), and currents influenced by rotation (Ungarish & Huppert 1998, 1999).
Recently, Hogg et al . (1999a) have shown how, by taking horizontal integrals of the
full shallow-water equations, the errors in the box-model approach can be rigorously
determined.

4. Shallow-water equations

A more accurate representation of the flow can be obtained by using shallow-water
theory (Whitham 1974) which allows for horizontal variations of properties in the
flow, but still assumes that there are no vertical variations because the intensity of the
flow is sufficient to keep the current well mixed (in the vertical). Vertical accelerations
in the flow are neglected and the pressure distribution is assumed to be hydrostatic.
The validity of this approach is based on the requirement that the horizontal extent
of the current greatly exceeds its (vertical) thickness. For a one-dimensional current,
on the assumption that the ambient is sufficiently deep compared to the thickness
of the current that motions within the ambient can be neglected, the single-layer
shallow-water equations describing conservation of mass and momentum are

ht + (uh)x = 0 (4.1)

and

(uh)t + (u2h+ 1
2g
′h2)x = 0, (4.2)

while the conservation of particles is given by (2.5). Suitable boundary conditions
are given by zero flow at the end wall x = 0, which indicates that

u(0, t) = 0, (4.3)

and the Froude number condition (2.1) at the other end of the current. A composi-
tional current, for which the density difference is due to a dissolved salt, for example,
can be analysed formally by considering V ≡ 0 and φ constant, φ0, say. There then
exists a similarity solution to the equations which results in the relationship

l(t) =
(

27Fr2

12− 2Fr2

)1/3
(g′A)1/3t2/3. (4.4)
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The box-model approach leads to the same form, as it must, except that the pre-
multiplicative factor is replaced by (3

2Fr)
2/3.

The validity of this long-time solution, which is appropriate only after the initial
slumping phase during which fluid adjusts from its initial configuration, has been
extensively confirmed (Huppert & Simpson 1980).

For a particulate gravity current, with non-zero V , a similarity solution does not
exist and recourse must, in general, be made to numerical solutions. However, for
small values of V , explicitly for small values of the non-dimensional settling number
β = V/(g′0h0)1/2, where g0 = g′pφ0 and h0 are the initial values of the reduced grav-
itational acceleration and thickness of the current, respectively, Hogg et al . (1999a)
have recently devised a perturbation expansion, in similarity variables, about the
similarity solution valid for β ≡ 0. Further, Harris (1998) has shown how to render
the expansion uniformly valid for all time.

Evaluating the numerical solution of the governing equations, Bonnecaze et al .
(1993) found that experimental results agreed better with numerical solutions of
the two-layer equations and these were almost as easy to obtain. In this case, the
equations of conservation of mass in the two layers are

ht + (uh)x = 0 (4.5 a)

and

ĥt + (ûĥ)x = 0, (4.5 b)

where a hat indicates a variable in the ambient layer. A momentum balance for the
two layers can then be written as

(uh)t + (H − h)(u2h+ 1
2g
′
pφh

2)x + h[uh(H − h)]x = 0. (4.6)

The two-layer model is made up of (2.5), (4.5 a) and (4.6) for the three variables
that describe the gravity current, h, v and φ, together with the appropriate boundary
conditions (2.1) and (4.3). Note that there are no adjustable parameters associated
with the equations.

The numerical integration of the equations is relatively easy to code, with the
details described by Bonnecaze et al . (1993), and recent extensions set out by Hogg
et al . (1999a). The numerical solutions indicate that two types of shocks, represented
as travelling bores, can occur in the current. The first only occurs if the initial
height of the current is comparable with (greater than ca. 70% of) the depth of the
ambient. This bore develops in the initial or slumping phase of the current (Huppert
& Simpson 1980; Rottman & Simpson 1983). With the removal of the lock separating
the dense fluid from the relatively less dense ambient, a heavy gravity current begins
to develop while, simultaneously, another gravity current of ambient fluid travels
over and against the relatively dense underflow in the form of a lock-exchange flow
until it reaches the end wall. A bore is then reflected towards the front which it
eventually overtakes and then disappears (figure 2). This marks the beginning of the
validity of the similarity form of solution for a compositional current; but the bore is
quite similar and just as important in a particulate current. The bore is completely
absent in a box model (or a similarity solution), but the numerical solution of the
shallow-water equations indicates that it has a significant influence on the pattern
of sediment deposition (as indicated quantitatively in figs 13 and 14 of Bonnecaze et
al . (1993)).
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Figure 2. The numerically determined profiles of the height h(x, t) at various non-dimensional
times, as marked, of a collapsing heavy suspension intruding into a shallow ambient fluid. Taken
from fig. 3b of Bonnecaze et al. (1993).

The second shock, in the form of a travelling internal bore, develops in the late
stages of all particle-driven currents and separates a particle-free jet-like flow in
the rear from a relatively densely laden particulate flow near the front. After the
first bore (or wave in a deep ambient) has waned, the current shape approaches
the self-similar form associated with a compositional current: during this stage few
particles settle and the current behaves like a compositionally driven current. As the
current proceeds and the particles begin to settle, they do so more rapidly towards
the rear of the current where the height is less (cf. equation (2.4)), reducing the
density and pressure gradient in the tail of the current. With time, the particle
concentration in the tail approaches zero and the motion in the tail is a consequence
of the remaining momentum in the relatively particle-free fluid (and the effects of
buoyancy are negligible). Near to the front, however, buoyancy forces still play a
dominant role and a travelling bore is a result of the matching of the jet-like flow in
the rear to the buoyancy-driven flow at the front.

The agreement between the numerical solutions of the two-layer shallow-water
equations and the results of laboratory experiments in a 10 m long channel using
different initial masses of fairly monodisperse silicon carbide particles (density
3.217 g cm−3) suspended in water are excellent. Figure 3a presents the numerical
and experimental results for the length of the current as a function of time for a
series of different initial mass loadings, while figure 3b presents the density of deposit
as a function of length down the channel.

An axisymmetric extension of the above study has been reported by Bonnecaze
et al . (1995). They considered currents created either by the instantaneous release
of a finite volume of fluid or by a constant flux. The numerical solutions of the
axisymmetric shallow-water equations agreed fairly well with the results of their
numerous laboratory experiments. In particular, they determined that the final radial
extent, r∞, of a particle-driven current resulting from the instantaneous release of a
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Figure 3. (a) The length as a function of time for a 1.2l suspension with different initial masses
of nominally 37 µm diameter silicon carbide particles released instantaneously into a channel
of water 26 cm wide by 30 cm deep. The symbols are the experimental measurements and the
curves are numerical results obtained by integration of the two-layer shallow-water equations.
Taken from figure 12b of Bonnecaze et al. (1993). (b) The final areal density of deposit as a
function of downstream length for an initial mass of 100 g of nominally 23 µm (� - - - -) and
53 µm (◦——) diameter particles. All other parameters are as described for (a). Taken from
fig. 13 of Bonnecaze et al. (1993).

volume Q of fluid is given by

r∞ = 1.9(g′0Q
3/V 2)1/8. (4.7)

An axisymmetric box model leads to (4.7) with a constant of 1.1 replacing the 1.9
(Dade & Huppert 1995; Huppert & Dade 1998).
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Figure 4. The grey scale level representing particle concentration for a particulate intrusion of
initial bulk density 1.01 g cm−3 between a lower layer of density 1.18 g cm−3 underneath an
upper layer of density 1.00 g cm−3.

5. Further numerical codes

Numerous full-scale CFD codes have been written to follow particle-driven flows.
Many of these are tailored to investigate particular flows. The models generally
include a large number of adjustable parameters, which is rather unsatisfactory.
The CFD investigation into these problems best known to me, which has no
adjustable parameters, is currently being undertaken by S. Dalziel and associates of
the Department of Applied Mathematics and Theoretical Physics, University of Cam-
bridge. The code SETTLE (Dalziel & Linden 1997) is based on the two-dimensional
streamfunction-vorticity equations for an inviscid Boussinesq fluid. The implemen-
tation allows for the advection of multiple scalar quantities, each contributing to
the local bulk density. Suspended particles are treated in a continuum manner iden-
tical to the treatment of solutes, but with an additional advection term to model
the settling of the particles. Some modification of the boundary conditions is also
required to allow particles to ‘stick’ to the lower boundary and prevent resuspension.
Polydisperse suspensions may be modelled by including multiple scalar fields with
different densities and fall velocities. The numerical solution employs a finite-volume
discretization on a staggered grid with a third-order monotonic advection scheme for
all advected scalars.

Dalziel has adapted the numerical code to consider the two-dimensional intrusion
of an instantaneous release of a fixed volume of suspension into a compositionally
stratified ambient represented either by a two-layer system or by a continuous strati-
fication. Figure 4 presents the results of one simulation. Particles gradually sediment
from the current, which runs out of its driving buoyancy after ca. 40 s. The numeri-
cal results are in good agreement with experimental data (de Rooij et al . 1999) and
the calculated final sedimentation density as a function of distance somewhat sur-
prisingly agrees well with the results obtained by Bonnecaze et al . (1993) using the
shallow-water equations described in the last section to calculate the deposit from a
heavy suspension intruding at the bottom of a fresh-water layer (figure 5). It is too
early to document fully the advantages of using such CFD packages on the problems
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Figure 5. The final areal density of deposit as a function of downstream length determined by:
use of the numerical code SETTLE with the same conditions as for figure 4 (solid line); and the
results of using the two-layer nonlinear shallow-water equations of Bonnecaze et al. (1993) for
40 g of particulate matter with β = 0.0205 released from a lock 20 cm long by 20 cm wide by
10 cm deep (dash–dot line).

of interest to us here, or to know the fluid-dynamical phenomena which they can
(accurately) predict, in contrast to the shallow-water simulations.

6. The influence of an external mean flow

The motivation of von Kármán’s original study published in 1940, in response to a
request from the American military before World War II, was to determine the mini-
mum wind speed which would blow a gravity current of released nerve gas back onto
friendly troops. Although that explicit question was not answered by von Kármán,
some analyses of the effects of mean winds in the atmosphere on the propagation
of a compositional gravity current have been undertaken (Simpson & Britter 1980;
Xu 1992; Xu & Moncrieff 1994). Recently, Hallworth et al . (1998) considered the
influence of a uniform mean flow in the ambient on the upstream and downstream
propagation in a two-dimensional geometry of a particle-driven (or compositional)
gravity current due to the instantaneous release of a fixed volume per unit width of
fluid A at the base of the flow.

A simple box model of the flow, based on the working hypothesis that at all
times the particle flow distribution in the current and its height are uniform in
the horizontal direction, is represented by the following (cf. equation (3.4)). The
conservation of volume condition,

l ≡ x+ y = A/h, (6.1)
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the two front conditions,
ẋ− U = Fr(g′pφh)1/2, (6.2 a)

ẏ + U = Fr(g′pφh)1/2, (6.2 b)
and the conservation of the particles’ constraint,

φ̇ = −V φ/h, (6.3)
where x and y are the downstream and upstream length of the current, respectively,
and U is the effective mean external flow as experienced by the current. With the
initial conditions (3.5), the system (6.1)–(6.3) can be easily shown to have solutions
(Hallworth et al . 1998)

Φ = (1− L5/2)2, (6.4 a)
T = F(L) (6.4 b)

and

Z = ΛT, (6.4 c)
where the non-dimensional variables

L = l/lp, (6.5 a)
Z = (x− y)/lp (6.5 b)

and

T = t/τp (6.5 c)
have been defined in terms of the length- and time-scales,

lp = 22/5l∞, (6.6 a)
τp = 5A/(lpV ) (6.6 b)

and the single non-dimensional parameter,
Λ = 10UA/(l2pV ), (6.7)

which is proportional to the ratio of the mean external velocity to the settling velocity
of the particles. Note that the current ceases (φ = 0) when l = lp independent of the
ambient flow speed or Λ.

Comparing the theoretical results (6.4 b), (6.4 c) with numerous experiments car-
ried out in a long channel through which was pumped a fairly uniform mean
flow, Ū , at the rate of 2.9 cm s−1, Hallworth et al . (1998) found that the non-
dimensionalization suggested by the box model collapsed the data extremely well
and indicated that U = 0.62Ū , in good agreement with earlier experiments on a
much smaller scale by Simpson & Britter (1980).

They also calculated the deposit distribution profiles, which became more asym-
metric with increasing Λ. The agreement between these theoretical calculations and
their experimental data was very good and the asymmetry predicted by the theory
was accurately reflected in the data. The maximum upstream distance that the cur-
rent can penetrate, l+, can also be easily calculated, and Hallworth et al . (1998)
derived the approximate representation

l+
lp

=
1
2 + (1

5 logΛ− 1
8π) + 1

50Λ
2

1 + 3
25Λ

4
, (6.8)
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Figure 6. The maximum non-dimensional upstream distance of a particulate intrusion in a
uniformly flowing ambient, l+/lp, as a function of Λ = 10UA/(V l2p).

which is presented, in excellent agreement with their experimental data, in figure 6.
They also obtained numerical solutions of the single- and two-layer shallow-water
equations which compared well with the results from the box model.

The extension of these results to cover the release of a constant flux (rather than
a fixed volume) is currently being considered by Hallworth et al . (1999). In addition,
the influence of an external flow on the release of particle-rich fluid from a point
source, which analyses the interaction between a two-dimensional current and an
axisymmetric release, has been investigated by Hogg & Huppert (1999). Using a
box model in a reference frame translating with the current, they determine the
geometrical shape and extent of the current as a function of time and the distribution
of the deposit within that region, the area of which increases monotonically with time.

7. Less dense interstitial fluid

There are many natural occurrences of sediment-laden gravity currents in which the
density of the interstitial fluid is less than that of the ambient, which in itself is less
than the bulk density of the current. Such currents are driven by the excess density of
suspended particles. However, after sufficient particles have sedimented, the current
will become buoyant, cease its lateral motion and ascend to form a plume.

With these concepts in mind, Carey et al . (1988) conducted a series of qualitative
experiments in which heavy sediment-laden fresh-water currents spread radially from
a point source along the floor of a tank containing salty water. After some time, the
forward motion of the flow front ceased and an axisymmetric ring of vigorous plumes
was generated. The behaviour of a layer of suspended fine particles in fresh water
placed below a layer of salt water, with the bulk density of the suspension larger
than that of the upper layer, which was larger than that of the interstitial fluid, was
quantitatively investigated by Huppert et al . (1991) and Kerr & Lister (1992). As
sedimentation in the otherwise stagnant lower layer progressed, buoyant fluid was
released across the interface between the two layers, resulting in convection and mix-
ing of the finer fractions of the sediment throughout the upper layer. Huppert et al .
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presented a theoretical model which predicts the evolution of the lower layer and the
amount of particle entrainment into the upper layer, with results in good agreement
with their laboratory experiments. The constraining effects of a concentration gra-
dient in the upper layer, a situation relevant to numerous oceanographic situations,
was evaluated by Kerr (1991), who applied his results directly to data taken in the
Sulu Sea (Quadfasel et al . 1990).

These works partly motivated an experimental and theoretical study of sediment-
laden gravity currents with buoyant interstitial fluid (Sparks et al . 1993). A theoreti-
cal model, incorporating the shallow-water approach outlined in § 4, led to numerical
predictions for the rate of propagation, the distance at which lofting takes place and
the distribution of the final deposit, all of which were in good agreement with the
experimental observations.

A box-model approach, following the concepts outlined in § 3, commences by writ-
ing

ρc = ρpφ+ ρi(1− φ), (7.1)

where ρi, the density of the interstitial fluid, is less than ρa. The reduced gravity

g′ = cpφ− ca, (7.2)

where

cp = (ρp − ρi)g/ρa (7.3 a)
ca = (ρa − ρi)g/ρa. (7.3 b)

We then seek the solution of (3.4 a), (3.4 c) subject to (3.5) in conjunction with

l̇ = Fr[(cpφ− ca)h]1/2. (7.4)

After some fairly straightforward manipulations, we find that the position of lift-off,
l∗, is given by

(l∗/l∞) = [G(γ)]2/5, (7.5)

where, as derived in § 3, l∞ = (25Fr2g′pφ0A
3/V 2)1/5, γ = (ρa− ρi)/[(ρp− ρi)φ0] and

G(γ) = (1− γ)1/2 − γ1/2 tan−1(γ−1 − 1). (7.6)

(If the current propagates in shallow water (h > 0.075H), the relationship (7.5) is
replaced by

l∗/l∞ = [G(γ)]6/13. (7.7)

For an axisymmetric flow in a very deep ambient, the lift-off radius r∗ is given by

(r∗/r∞) = [G(γ)]1/4 (7.8)

(Dade & Huppert 1995), where r∞ = (64Fr2g′pφ0Q
3/π3V 2)1/8 and Q is the released

volume of the flow.)
Figure 7 presents a series of datum points from three different experimental sit-

uations along with graphs of [G(γ)]2/5 and [G(γ)]6/13. The agreement between the
data and both curves is seen to be fairly good, with a slightly closer agreement to
the model for a shallow ambient, the situation in which most of the data were taken.
A more complete discussion of this work is currently being prepared for publication
(Hogg et al . 1999b).
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Figure 7. The non-dimensional distance to lift-off l∗/lp as a function of the non-dimensional
parameter γ for a suspension of heavy particulate matter in an interstitial fluid which is less
dense than the ambient. The data points are from experiments with the density difference
between the interstitial and ambient fluid arising from alcohol being added to the interstitial
fluid (N) or salt being added to the ambient (�). The dashed curve represents (l∗/lp) = [G(γ)]2/5,
which is the result of a box-model analysis for a very deep ambient, and the solid curve represents
(l∗/lp) = [G(γ)]6/13, which is the result of a box-model analysis for a shallow ambient.

The above processes are believed to play an important role in the generation of
ash-rich co-ignimbrite plumes from pyroclastic flows. Sedimentation in the initially
ground-hugging pyroclastic flow and the heating of the entrained cold air by the
small ash particles causes a mixture of hot air and fine suspended particles to become
buoyant relative to the overlying atmosphere. A spectacular example of such a process
occurred to the blast flow resulting from the eruption of Mt St Helens in 1980, which
penetrated some 30 km into the atmosphere after travelling between 15 and 20 km
along the ground at velocities of around 100 m s−1 (Sparks et al . 1997). Similar
co-ignimbrite clouds occurred as the result of the eruption of Mt Pinatubo in 1991
and are believed to have been associated with many previous large pyroclastic flow
eruptions.

Analogous lift-off phenomena can occur from turbidity currents transporting sedi-
ment suspended in relatively light water from the continental shelf and shallow-water
coastal regions into deep parts of the ocean basin, where the density of the (salty)
water is relatively larger. The relatively fresh coastal water can thereby be mixed into
deeper water a considerable distance off-shore. The same phenomena will influence
the sedimentation patterns at delta fronts and estuaries when sediment-laden fresh
or brackish water intrudes into the sea water.

8. Plumes

The motion of a turbulent buoyant plume above a continuous constant source
was investigated by Morton et al . (1956), who introduced the famous entrainment
hypothesis (Turner 1986). Using a combination of dimensional analysis and labora-
tory experimentation, they considered a pure buoyant plume of specific buoyancy
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flux F rising in a stably stratified environment of constant buoyancy frequency N .
As the plume rises, entrains and mixes in relatively dense air from the environment,
the density in the plume increases with height, in contrast to the density of the
ambient, which decreases. The plume reaches a height at which the net buoyancy is
zero; it overshoots somewhat, then settles back slightly and spreads horizontally into
the environment as an axisymmetric gravity current of constant flux. The height, H,
of the centre of this current above the source is given by

H = 3.8F 1/4N−3/4, (8.1)

a relationship which, derived from a laboratory experiment in which H ≈ 0.1 m, was
shown to be valid for a large oil fire for whichH was in excess of 3000 m (Briggs 1969).
These ideas were incorporated into various models for volcanic eruption columns, as
summarized in Sparks et al . (1997), to yield good agreement with observed heights
of rise H ∼ 4× 104 m—a successful extrapolation from the original laboratory scale
of over five orders of magnitude.

A volcanic plume contains many small (heavy) ash particles: those still remaining
as the plume intrudes laterally into the atmosphere will be advected along with it,
while at the same time some will settle out of the gravity current and deposit on
the ground (and a fraction may be entrained back into the plume). The laboratory
simulations of Carey et al . (1988) were conducted to simulate this behaviour. Buoyant
plumes of sediment-laden fresh water were generated at the base of a layer of fresh
water, rose to the top of the layer and then spread as gravity currents along the
upper surface. The experimental data were then described quantitatively (Sparks et
al . 1991) by adapting (2.4) in the following way. In the steady axisymmetric flow
with radial velocity ur of a layer of turbulent fluid of thickness h, the rate of change
of the mass, M , of suspended particles in the current with radial distance r will be
given, following (2.4), by

dM
dr

=
−VM
urh

. (8.2)

Because the flow is steady, Q = 2πrhur is constant and so (8.2) has the solution

M = M0 exp[−πV (r2 − r2
0)/Q], (8.3)

where M0 is the mass of particles in the current at radius r0. Figure 8a presents the
experimental data and the relationship (8.3) for five different particle sizes with a
separate V associated with each particle. The agreement is surprisingly good. This
comparison was then followed up by Bursik et al . (1992), who compared the sedimen-
tation density of tephra of the Fogo A plinean deposit on the island of San Miguel
in the Azores from the umbrella cloud associated with the eruption of the Agua de
Pau Volcano about 3000 BCE. The results of their investigation are presented in fig-
ure 8b, again showing good agreement between theory and observations for different
particle sizes.

Further details of particle sedimentation from volcanic clouds, including effects due
to fall out from, and re-entrainment by, the volcanic column and the influence on the
sediment distribution of a mean wind are reviewed in Sparks et al . (1997). This work
also contains a chapter on the exciting area of hydrothermal plumes, which issue at
temperatures of ca. 350 ◦C through vents at the bottom of the ocean. The particles
in these plumes, consisting mainly of fine-grained sulphides, are formed in situ by
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Figure 8. The mass of sedimentation (on a log scale) as a function of the square of the radius
for different particle sizes, (a) from laboratory measurements (Sparks et al. 1991) and (b) from
the Fogo A deposit (Bursik et al. 1992). The straight lines represent the theoretical relationship
(8.3).

chemical reactions which are initiated by the entrainment of ambient sea water. It
has been estimated that more than 50% of the particles that sediment from the rising
plume can be re-entrained into it at lower levels.

9. The effects of entrainment

In the discussion so far, the fluids that make up the current and the ambient have been
considered distinct: effects of entrainment have been neglected, and the total volume
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of the gravity current remains constant as it propagates. This has been well known
to be false for quite some time. As the heavy fluid of the current propagates into the
relatively less dense environment, for example, it traps some ambient fluid beneath
it, which rises into the head of the current and (unless the fluids are immiscible)
mixes with it. How large is this entrainment (which is completely different from the
entrainment across the whole bounding surface of a turbulent plume, as introduced
by Morton et al . (1956)), and how is it reflected in the rate of propagation of the
current?

To answer these questions, Hallworth et al . (1993, 1996) carried out a series of
particle-free experiments using a novel neutralization technique, in order to quantify
the entrainment. A known amount of a basic salt (NaOH) and some pH indicator
was mixed into the original fluid which made up the gravity current and which
intruded into and entrained an acidified ambient. The current propagated with a
deep blue (basic) head which, at a measurable distance (and time), quite suddenly
turned red, indicating that the predetermined amount of dilution had taken place
in the head of the current. Guided by these experimental results, Hallworth et al .
constructed a theoretical model which predicts quantitatively the entrainment into
the head of a current as a function of distance from the source. For the instantaneous
release of a constant volume of fluid in a two-dimensional geometry, for example, they
showed, by using dimensional analysis, that a dimensionless entrainment or dilution
ratio E, defined as the ratio of the volumes of ambient and original fluid in the
head, is independent of the initial reduced gravity of the current, as confirmed by
their experiments. The model indicated further that entrainment into the head is
negligible (E ≈ 0) in the slumping phase, during which the current is adjusting into
an almost self-similar form. Beyond that it is well represented by

E =
[
1 +

1
2

(α− k)y

A
1/2
s

]2α/(α−k)

− 1, (9.1)

where y is the distance of propagation since the end of the slumping phase, at which
point the area of the head is As, and α and k are experimentally determined constants
which reflect the amount of entrainment into the head and the ratio of the height
of the tail to that of the head, respectively. Hallworth et al . (1996) determined the
values of α and k for flow over a smooth (α = 0.073, k = 0.16) or rough (0.080, 0.20)
rigid base or under a free surface (0.016, 0.18) (and (0.081, 0.16) for axisymmetric
currents propagating over a smooth base). They also extended the model to predict
that, taking into account the effects of entrainment, the propagation distance as a
function of time should obey

Y = 1−
[
1− k − 3α

2(k − α)
T

]2(k−α)/(k−3α)

, (9.2)

where Y and T are suitably non-dimensionalized distance and time, respectively.
This relationship may not look like the two-thirds similarity form of (4.4). However,
with the experimentally determined values of α and k, it does not depart much from
the two-thirds form; this explains why predictions based on the similarity solution
(4.4), obtained without recourse to the effects of entrainment, are in good agreement
with data obtained from real entraining gravity currents.
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10. Polydispersion

Most of the research described so far has assumed that the particles are of one size,
and can hence be represented by one value of the settling velocity, V . However, in
practice, there is a range of particle sizes: in the experimental laboratory the variation
may be as little as ±20% about the mean, but in real geological situations there may
be a variation in size by as much as five orders of magnitude.

As described in § 8, Sparks et al . (1991) handled this variation in interpreting their
data in the simplest possible way: they associated each particle size independently
with its own free-fall speed. And this yielded encouraging results. However, it sug-
gested that each particle size is advected independently of all the other particles in
the current, a conclusion which is clearly incorrect. A box-model investigation of two
particle sizes with different initial concentrations was presented by Dade & Huppert
(1995). They concluded that, for the same initial density difference, the influence of
the smaller, less easily deposited, particles was to extend and hence thin the current
more rapidly. This leads to an earlier, more rapid, deposition of the larger particles.
At the same time, however, the larger particles are transported to greater distances.
While these conclusions are (probably) correct, the quantitative distinction between
the two particle sizes seems to be overestimated by this box-model approach—and
strongly so as the ratio of the sizes of the two particles increases (Gladstone et al .
1998).

A more rigorous approach uses the nonlinear shallow-water equations described in
§ 4. Using dimensional analysis on these equations, Bonnecaze et al . (1996) developed
a scaling of the single-layer equations so that all the parameters appeared only in the
initial conditions. The long-time solution of these ‘master’ equations was obtained,
which were independent of all details of the initial conditions except for the total
volume. Bonnecaze et al . then proposed that the total deposit could be obtained from
a direct superposition of the deposit from individual-sized particles. Quantitatively,
they argued that for the instantaneous release into a deep layer of fluid of a fixed
(two-dimensional) volume of A of a suspension of N particle sizes, each with Stokes’s
free-fall speed Vi and initial volume concentration φi0 (i = 1, 2, . . . , N), the total
deposit density η(x) could be written in terms of a shape function W (s) as

η(x) = ρPA
N∑
i=1

φi0σiW (σix), (10.1)

where

σi =
[
V 2
i

g′0A3

]1/5

(10.2 a)

and

g′0 = g′p
N∑
i=1

φi0, (10.2 b)

with an accurate representation of W (s) being given by

W (s) =
0.820

1 + 0.683s2 + 0.017s8 . (10.3)
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This theoretical representation was in good agreement with the results of a series
of laboratory experiments using five different particle sizes. The paper also presents
quantitative results for an axisymmetric release.

A nicely conceived, well-ordered series of laboratory experiments in which dilute
suspensions made of two particle sizes were released into relatively shallow water has
recently been conducted by Gladstone et al . (1998). They confirmed, qualitatively,
the earlier conclusions of Dade & Huppert (1995) and Bonnecaze et al . (1996), but
there was quantitative agreement with the results of Bonnecaze et al . only during
the late stages of each experiment when the current had thinned sufficiently for the
influence of motions in the upper layer to be negligible (as assumed in the theory).

It is my opinion that there is still more to be determined quantitatively in this
matter. In particular, no (numerical) calculation (known to me) has investigated the
all-important determination of the distribution of size in the deposit with height,
which is the quantity measured by, and of most interest to, geologists.

11. Applications from engineering and the Earth sciences

This section will briefly describe applications of some of the analyses presented so
far to real large-scale situations in engineering and the Earth sciences. The descrip-
tion will (I hope for understandable reasons) concentrate on situations I have been
strongly involved in myself, though these represent but a small proportion of the
problems to which the ideas are relevant.

(a) Dredging of harbours

The Ministry of Agriculture, Fisheries and Food recently approached me about a
novel dredging technique being employed in British harbours and waterways by a
Dutch company. A broad jet of water was rapidly discharged from a long (ca. 20 m)
pipe held horizontally a few centimetres above a bed of loose sand and silt. Some
of the bedload was lifted into the water column, in a way described quantitatively
by Hogg et al . (1997). The resultant suspension was to propagate out to sea, aided
by the tidal flow. This is the situation described by the analysis presented in § 6
and in Hallworth et al . (1998, 1999). To illustrate the use of their theoretical predic-
tions, consider the following example. Sedimentary particles of size 20 µm and excess
density 1 g cm−3 have a settling velocity of 5 × 10−2 m s−1. A suspension of these
particles with concentration 5% by volume and cross-sectional area 100 m2 yield a
length-scale l∞ = 800 m. In a tidal current of velocity 10 cm s−1, Λ = 0.2 and the
particle-laden current propagates upstream over a distance of 300 m.

(b) Turbidity currents

Suspension-driven gravity flows, known as turbidity currents by geologists, are a
primary mechanism by which sediment from land can be transported into the deep
sea. Turbidity currents can originate from a debris flow or a gravity slide associ-
ated with sea-floor failure on the continental slope. The resulting flow can be self-
sustaining and even increase in sediment load as it propagates rapidly down the
continental slope through a network of submarine canyons (Pantin 1979). When the
turbidity current arrives at the relatively gentle slopes of the abyssal plain, it runs
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out and deposits its sediment in the way described earlier in this paper and reviewed
from a different point of view by Middleton (1993).

Sequential turbidite flows can lay down a series of beds (Pickering et al . 1989) and
those composed of compacted fine material can act as traps and containers for oil.
If only for this reason, detailed descriptions of many individual turbidite flows, even
quite small ones, have been painstakingly constructed. The largest flows, though
less numerous, may, however, be more important in large-scale descriptions of the
evolution of the surface of the Earth. One of the largest turbidites to have been
continuously traced on the ocean floor is found on the Hatteras Plain off the eastern
coast of North America and is known as the ‘Black-Shell’ turbidite (Elmore et al .
1979) because of the many small black shells that litter the deposit. The turbidite
lies in water 5.5 km deep, covers an area of at least 44 × 103 km2 and extends for
more than 500 km along a channel flanked by abyssal hills. The problem now comes
down to what a geophysicist calls an inverse problem: given the characteristics of the
deposit, can one evaluate the details of the flow from which it originated? Using the
observed thickness of the deposit as a function of the distance along the Hatteras
Abyssal Channel, a mean fall speed V of 0.08 cm s−1 (corresponding to silt-sized
particles with an effective diameter of 32 µm) and the box-model results developed
in § 3, Dade & Huppert (1994) showed that the deposit resulted from an initial surge
30 km long, 300 m high and ca. 200 km wide containing particulate matter which
made up 5% by volume, and 13% by weight, of the surge.

In a subsequent paper, Dade & Huppert (1995) analysed in a similar fashion three
radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic
Ocean.

(c) Pyroclastic flows

As the result of increased pressure in the chamber beneath a volcano, a volcanic
eruption can occur during which a hot multiphase flow is ejected at speeds of hun-
dreds of metres per second into the atmosphere. If the contribution of the heavy ash
particles to the bulk density at the base of the current is too large, the eruption
column collapses at a rather short height (Woods 1995) and there results what geol-
ogists call a pyroclastic flow, which is a ground-hugging ash flow driven by the bulk
density difference between the flow and the atmosphere into which it intrudes. Dade
& Huppert (1996) proposed that first-order features of a pyroclastic flow could be
quantitatively explained by modelling it as an isothermal, turbulently propagating,
relatively low-concentration, particulate-driven gravity current. Further, they asked
whether there was a reasonable solution to the inverse problem of determining the
initial conditions of the flow, and especially the initial particulate concentration,
given the observed distribution and extent of the resulting deposit, known as an
ignimbrite by geologists.

They answered this question specifically for the eruption of Taupo on the North
Island of New Zealand in AD 186, which distributed approximately 30 km3 of solid
material in a roughly axisymmetric fashion about the vent up to a distance of 80 km.
From their calculations, they inferred that the total volumetric flux in the turbulent
flow after collapse of the central eruption column and the entrainment that would
have been associated with it was of the order of 40 km3 s−1 and lasted for no more
than about 15 min. Further, they calculated that the initial solids’ concentration in
the pyroclastic flow was 0.3% by volume in a current with a thickness of around 1 km
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and which travelled at a typical speed of 200 m s−1. At that speed, by transferring
kinetic energy into potential energy, the current could surmount any topographic bar-
riers less than ca. 2 km in height. All hills within 100 km of Taupo are less that 500 m
high and the deposit was draped virtually uniformly over all those hills, attesting to
the energy of the flow.

It would be both fun and instructive to apply these explicit ideas to other eruptions
and compare the results.

(d) Other situations

Of course there are many other areas of relevance to engineers and Earth scien-
tists to which the concepts described above can be applied. Amongst these are the
generation and maintenance of gigantic dust storms in the atmosphere. A vast wall
of dust, up to 1 km high, can advance at speeds of 20 m s−1. Such dust storms occur
regularly: in parts of Australia and the USA; in India, where they are known as
‘Andhis’ ; and in parts of Africa, especially in the Sudan, where they are known as
‘haboobs’, the Arabic word for strong wind. They can cause considerable damage to
animals, crops and property.

Plumes from volcanic eruptions can, as described in § 8, transport large quantities
of particles to heights in the atmosphere at which commercial aeroplanes commonly
cruise. All aircraft are designed to operate in particle-free air and the encounter
of a particle-laden plume by a plane can result in either catastrophic failure of its
engines or considerable deterioration of its bodywork. Many principal air routes are
over volcanic chains, but, because volcanic plumes can be advected through the
atmosphere by the strong prevailing winds at height, the avoidance of the air space
above a volcano does not preclude a problem. Hence accurate prediction of wind-
blown particle-driven plumes is required in almost real time.

Finally, and possibly not the cleanest example with which to end this section,
sewage companies have considerable interest in separating particles of various sizes
from a flowing gravity current to end up with water as pure and particle free as
possible, or at least as pure and particle free as required by local legislation. Most
companies operate old systems, designed by ‘suck it and see’ methods. However,
there is currently a move by some sewage operators to investigate their problems
scientifically and quantitatively, and at least to try to incorporate some of the latest
fundamental research.

Other applications of these general ideas to other problems in engineering and the
Earth sciences is also likely to happen in the (near) future.

12. Concluding remarks

This review has painted a broad-brush picture of some of the recent work on the
flow of relatively low-concentration suspensions. It has outlined the major concepts
on which the models are based: quantitative descriptions of the advection and sed-
imentation of the particulate material; and the Froude number, or momentum bal-
ance condition, at the head. The review has discussed many special situations and
given some indication of applications to engineering and the Earth sciences. A num-
ber of other phenomena could have been described but were not for lack of space.
Included amongst these are the effects of rotation; varying topographic slope; high-
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concentration flows; and erosion of the bottom surface. A few remarks will now be
made on each of these topics.

The Earth is a rotating system; and large-scale flows, specifically those at sig-
nificantly small Rossby numbers Ro = U/Ωl, where U and l are typical velocities
and lengths of the flow in a background rotation of Ω, are strongly influenced by
rotation. The effects of rotation are important on the shape of a spreading blob
of dense fluid, even if the Rossby number is not small (Ungarish & Huppert 1998,
1999). They showed that Coriolis effects are negligible only in the initial stages of
the evolution, after which the axisymmetric flow, predicted by numerical solution
of the shallow-water equations, takes up a shape which has a downward decreasing
profile at the nose while the outward velocity decreases to zero in finite time. They
plan to investigate these surprising, and somewhat counter-intuitive, results on the
large (13 m diameter) rotating table in Grenoble during the spring of 1999. With the
propagation of such blobs over the continental rise in mind, Nof (1996) investigated
the paths of propagation of an isolated patch of dense inviscid fluid over a parabolic
bottom. He applied the results to an analysis of the well-known record of breaks in
submarine cables caused by the turbidity current resulting from the earthquake on
the Grand Banks in 1929. In my opinion, much more research is still to be completed
on the effects of rotation on particulate suspension flows.

Most natural boundaries are not smooth and horizontal; typical topography is
considerably variable. As a first attempt to model such boundary variations, Dade et
al . (1994) considered the rates of propagation of and suspension from a buoyant two-
dimensional cloud moving down an inclined surface (at fixed angle θ). They found
that once the cloud was initiated, the speed of its propagation decreases with the
inverse square root of the distance down the slope until almost all the particulate
matter has sedimented at a distance xr, say, which they evaluated as a function of the
initial conditions. A numerical programme to integrate the shallow-water equations
describing the flow of a suspension over a generally varying bottom topography has
been written and tested and is currently being used to evaluate general conclusions
(Bonnecaze & Huppert 1999).

It is obviously of importance to determine when the results discussed in this review,
with the explicit assumption of a relatively low-concentration non-interacting suspen-
sion, are valid. To this end, Hallworth & Huppert (1998) conducted some preliminary
experiments, with each one employing a larger initial particle concentration. They
found that at first, with increasing initial particle concentration, the resulting current
propagated at an increased rate due to the increased buoyancy. Beyond an initial
volume concentration of ca. 0.3, the current came to an abrupt halt at a point down
the channel, depositing the bulk of its initial load as a relatively thick layer of fairly
constant thickness, characterized by a pronounced steep snout. A very much thinner
layer extended for some distance beyond this arrest point. Hallworth & Huppert
were not able to present a quantitative theory to explain this change in behaviour,
but were pleased to be informed during the meeting that a similar transition, at
about the same critical volume concentration, had been observed in shear-flow tests
(Kumar & Muir Wood 1996). High-concentration flows still need considerable further
investigation, as particularly outlined in the recent review by Iverson (1997).

The erosion of a sedimentary bed, the pick up of particles, can be an important
process even though it has not been explicitly mentioned in this review so far. Hogg
et al . (1997) and Hogg & Huppert (1999) determined the erosion of a bed due to
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a jet either incident upon, or directed parallel to, a loose bed of small particles.
The erosion of a bed by a shear flow, in such a way as to increase the buoyancy,
and hence the shear, to lead to a self-accelerating current, a process often called
autosuspension, was first considered, independently, by Pantin (1979) and Parker
(1982). They subsequently combined their approach (Parker et al . 1986) to derive
conditions under which autosuspension occurs. Experimental confirmation of these
theoretical criteria is still awaited.

I have no doubt that other interesting phenomena in this area have already been
investigated, and that many more will be developed in the future. This conference,
along with the resulting discussions and publications, have been greatly beneficial
towards this development.

It is with much gratitude that I acknowledge the many stimulating and penetrating conversa-
tions about suspension flows from which I have benefited with my colleagues R. T. Bonnecaze,
W. B. Dade, M. A. Hallworth, A. J. Hogg, J. R. Lister, R. S. J. Sparks and M. Ungarish, all of
whom have been generous in sharing their thoughts with me. Parts of the paper were written
while I was a short-term visitor at the Hyams Institute, and I am grateful to the Director,
E. A. Sharota, for the kind hospitality given me.
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